Copied to
clipboard

G = C22xD15order 120 = 23·3·5

Direct product of C22 and D15

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C22xD15, C10:2D6, C6:2D10, C15:2C23, C30:2C22, (C2xC6):3D5, (C2xC10):5S3, (C2xC30):3C2, C5:2(C22xS3), C3:2(C22xD5), SmallGroup(120,46)

Series: Derived Chief Lower central Upper central

C1C15 — C22xD15
C1C5C15D15D30 — C22xD15
C15 — C22xD15
C1C22

Generators and relations for C22xD15
 G = < a,b,c,d | a2=b2=c15=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 284 in 64 conjugacy classes, 31 normal (9 characteristic)
C1, C2, C2, C3, C22, C22, C5, S3, C6, C23, D5, C10, D6, C2xC6, C15, D10, C2xC10, C22xS3, D15, C30, C22xD5, D30, C2xC30, C22xD15
Quotients: C1, C2, C22, S3, C23, D5, D6, D10, C22xS3, D15, C22xD5, D30, C22xD15

Smallest permutation representation of C22xD15
On 60 points
Generators in S60
(1 32)(2 33)(3 34)(4 35)(5 36)(6 37)(7 38)(8 39)(9 40)(10 41)(11 42)(12 43)(13 44)(14 45)(15 31)(16 57)(17 58)(18 59)(19 60)(20 46)(21 47)(22 48)(23 49)(24 50)(25 51)(26 52)(27 53)(28 54)(29 55)(30 56)
(1 20)(2 21)(3 22)(4 23)(5 24)(6 25)(7 26)(8 27)(9 28)(10 29)(11 30)(12 16)(13 17)(14 18)(15 19)(31 60)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(43 57)(44 58)(45 59)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)
(1 60)(2 59)(3 58)(4 57)(5 56)(6 55)(7 54)(8 53)(9 52)(10 51)(11 50)(12 49)(13 48)(14 47)(15 46)(16 35)(17 34)(18 33)(19 32)(20 31)(21 45)(22 44)(23 43)(24 42)(25 41)(26 40)(27 39)(28 38)(29 37)(30 36)

G:=sub<Sym(60)| (1,32)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,41)(11,42)(12,43)(13,44)(14,45)(15,31)(16,57)(17,58)(18,59)(19,60)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52)(27,53)(28,54)(29,55)(30,56), (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,16)(13,17)(14,18)(15,19)(31,60)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(43,57)(44,58)(45,59), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,60)(2,59)(3,58)(4,57)(5,56)(6,55)(7,54)(8,53)(9,52)(10,51)(11,50)(12,49)(13,48)(14,47)(15,46)(16,35)(17,34)(18,33)(19,32)(20,31)(21,45)(22,44)(23,43)(24,42)(25,41)(26,40)(27,39)(28,38)(29,37)(30,36)>;

G:=Group( (1,32)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,41)(11,42)(12,43)(13,44)(14,45)(15,31)(16,57)(17,58)(18,59)(19,60)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52)(27,53)(28,54)(29,55)(30,56), (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,16)(13,17)(14,18)(15,19)(31,60)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(43,57)(44,58)(45,59), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,60)(2,59)(3,58)(4,57)(5,56)(6,55)(7,54)(8,53)(9,52)(10,51)(11,50)(12,49)(13,48)(14,47)(15,46)(16,35)(17,34)(18,33)(19,32)(20,31)(21,45)(22,44)(23,43)(24,42)(25,41)(26,40)(27,39)(28,38)(29,37)(30,36) );

G=PermutationGroup([[(1,32),(2,33),(3,34),(4,35),(5,36),(6,37),(7,38),(8,39),(9,40),(10,41),(11,42),(12,43),(13,44),(14,45),(15,31),(16,57),(17,58),(18,59),(19,60),(20,46),(21,47),(22,48),(23,49),(24,50),(25,51),(26,52),(27,53),(28,54),(29,55),(30,56)], [(1,20),(2,21),(3,22),(4,23),(5,24),(6,25),(7,26),(8,27),(9,28),(10,29),(11,30),(12,16),(13,17),(14,18),(15,19),(31,60),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(43,57),(44,58),(45,59)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)], [(1,60),(2,59),(3,58),(4,57),(5,56),(6,55),(7,54),(8,53),(9,52),(10,51),(11,50),(12,49),(13,48),(14,47),(15,46),(16,35),(17,34),(18,33),(19,32),(20,31),(21,45),(22,44),(23,43),(24,42),(25,41),(26,40),(27,39),(28,38),(29,37),(30,36)]])

C22xD15 is a maximal subgroup of   D30:4C4  D30:3C4  D10:D6  C22xS3xD5
C22xD15 is a maximal quotient of   D60:11C2  D4:2D15  Q8:3D15

36 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 5A5B6A6B6C10A···10F15A15B15C15D30A···30L
order1222222235566610···101515151530···30
size1111151515152222222···222222···2

36 irreducible representations

dim111222222
type+++++++++
imageC1C2C2S3D5D6D10D15D30
kernelC22xD15D30C2xC30C2xC10C2xC6C10C6C22C2
# reps1611236412

Matrix representation of C22xD15 in GL3(F31) generated by

3000
0300
0030
,
3000
010
001
,
100
0124
02722
,
3000
01927
02812
G:=sub<GL(3,GF(31))| [30,0,0,0,30,0,0,0,30],[30,0,0,0,1,0,0,0,1],[1,0,0,0,12,27,0,4,22],[30,0,0,0,19,28,0,27,12] >;

C22xD15 in GAP, Magma, Sage, TeX

C_2^2\times D_{15}
% in TeX

G:=Group("C2^2xD15");
// GroupNames label

G:=SmallGroup(120,46);
// by ID

G=gap.SmallGroup(120,46);
# by ID

G:=PCGroup([5,-2,-2,-2,-3,-5,323,2404]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^15=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<